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Polarization Characteristics of Single-Mode
Fiber Couplers

CHIN-LIN CHEN AND WILLIAM K. BURNS, MEMBER, IEEE

Abstract-The polarization characteristics of fiber couplers made of
birefringent single-mode fibers are studied. The effect of anisotropic

interfiber coupling, fiber birefringence, angular misalignment of fibers,
and twisting on the coupler characteristics are identified. The polariza-
tion characteristics of the couplers are compared with that of isolated
uncoupled fibers of the same birefringence and length. The equivalent
lumped element representations for three classes of fiber couplers are

also presented.

I. INTRODUCTION

sINCE low-loss single-mode optical fibers have become avail-

able in long lengths, many communication links and sensor

systems have been developed to take advantage of the proper-

ties offered by these fibers. Obviously, means must be found

to monitor the optical beams guided by the fibers, to divide a

beam into two or more paths, or to combine two or more

beams into one. An optical directional coupler is a basic struc-

ture for achieving these objectives. Methods of etching and

twisting [1] - [5], fusing [6], [7], or polishing [8], [9] have

been reported to construct couplers from existing single-mode

fibers. Couplers can also be formed by drawing preforms with

a twin core [10], [11]. These couplers have been used in

many fiber optic systems. For many applications, optical in-

terferometric systems, for example, the polarization character-

istics of the coupler are a crucial factor affecting the stability

and sensitivity of the system. In this work, the polarization

characteristics of single-mode fiber couplers will be studied.

For an ideal stress-free untwisted fiber with a perfectly cir-

cular core and cladding and a rotationally symmetric index

profile, the I-Fol mode is the lowest order mode in the weakly

guiding approximation. The transverse electric field of the

LPOI mode is linearly polarized along a direction and is inde-

pendent of the azimuthal variable $, and the longitudinal elec-

tric field has sin ~ or cos ~ type variation [12] . For the ideal

fibers under consideration, any two orthogonal directions may

be chosen as the reference directions, and an LPOI mode with

an arbitrary state of polarization (SOP) may be considered as

the superposition of LPOI modes polarized along two reference

directions. In reality, the core of a fiber is only nominally cir-

cular and can be subject to internal stress which results in in-

duced birefringence [13], [14]. Thus, conceptionally, we

may envision a fiber as having an elliptical core or an elliptical
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refractive index profde. It is natural to choose the directions

of the major and minor axes of the ellipse as the reference

directions. Except for polarization maintaining fibers, the

major and minor axes differ only slightly, of the order of a few

percent, so that the description in terms of LPOI modes re-

mains a valid approximation. Now the LPOI mode polarized

along the major axis propagates with a velocity slightly dif-

ferent from that polarized along the minor axis. Therefore,

real single-mode fibers are double-moded with two nondegen-

erate LPO1 modes. Let /3* ~ A~ be the propagation constants

of the LPO~ modes polarized along the major and minor axes,

respectively. In the absence of any external perturbation, the

evolution of the SOP in the fiber is a result of the interference
of these two eigemnodes, It is customary to introduce the bi-

refringent beat length L13B = 21T/A/3 to characterize tie bire-

fringence of the fiber. If the fiber is additionally subjected to

stress from bends or twists, additional birefringence is induced.

These additional birefringences would cause coupling between

the fiber eigemnodes j ust described, and thus affect the evolu-

tion of the SOP. The change of fiber birefringence due to

bending and twisting lhas been studied by Ulrich et al. [15],

[16], [18], and by Smith [17]. In summary then, the evolu-

tion of the SOP in a twisted and/or bent and birefringent

single-mode fiber depends on AD and the rate of twisting

and/or degree of bending of the fiber [19] -[22]. For single-

mode fiber couplers, an additional factor is, involved due to

coupling between the fibers. In the next section, a coupled

mode equation, containing these and other coupler param-

eters, is established to de:$cribe the evolution of the SOP. To

facilitate general understanding and to illustrate the roles

played by various parameters, three idealized classes of couplers

with increasing complexity are studied in Sections III-V

before the general case is considered. Instead of examining all

possible variations of the output SOP as a function of the

input SOP, we find it useful to use Jones’ matrices to descrilbe

the relations between input and output SOP [23], [24]. From

the Jones matrix, an equivalent lumped element representation

(ELER) may be found for each path between input and output

ports. All elements of these ELER’s are identified and pre-

sented in Sections III-V.

For three idealized classes of couplers the Jones matrices are

particularly simple and can be represented by products of urli-

tary matrices and a constant representing power transfer. This

implies that each path can be modeled by a rotator, a retarder,

and an isotropic absorlber [24] . We show that, in these ide-

alized cases, the evolul.ion of the SOP in the coupler is con-

trolled primarily by the birefringence of the fiber and that the

impact of interfiber coupling on the SOP is relatively small or
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zero. In the real couplers, then, our results imply that the

impact of the inter-fiber coupling on the SOP is second order

compared to the impact of the intrinsic fiber birefringence and

the birefringences induced in the fibers in the process of fabri-

cating the coupler.

II. COUPLED -MODE EQUATIONS

We begin by considering a single twisted birefringent fiber.

The axial direction of the fiber is chosen as the z-axis. Fig.

l(a) depicts the cross section of the fiber at z. An elliptical

core is drawn to represent a birefringent fiber with either an

elliptical core or an elliptical refractive index profde. For

convenience, the directions along the major and minor axes

are also used as the local coordinate system (u, u). Since the

fiber may be twisted, the angle@ between u-axis and a labora-

tory or stationary x-axis can be a function of z, i.e., @ = @(z).

If the fiber is not twisted, the field in the fiber is the super-

position of two orthogonal modes propagating with propaga-

tion constants D * ~ A13

E(r, +, z) = ilEu(z)fu(r, 4) + @u(z) fu(r, 4) (1)

where Eu(z) and Ev(z) vary like exp (–j(~ * ~ A8) Z) with con-

stant amplitude, and ~U(r, ~) and ~V(r, ~) describe the distribu-

tion of the fields of LPO~ modes polarized in u and u direc-

tions, respectively. For the nominally circular fibers discussed

in this work, fu and fv are independent of $ and fu ~fv. We

will ignore these functions henceforth. If the fiber is twisted,

(1) may be used to approximate the fields with the mode

amplitudes Iii’u(z) and 17U(z) governed by a coupled-mode

equation [22], [25]

where a prime signifies differentiation with respect to z. Also

included in (2) is the birefringence induced by twisting via the

photoelastic effect of the fiber and it is represented by the

term KP [15] -[ 19]. The mode amplitudes Eu, EU in the ro-

tating coordinates are related to EX, EY in the stationary

coordinates

(3)

The coupled-mode equation for E. and EY can be obtained by

substituting (3) into (2)

(4)

where

Nxx=b+$Ai3cos2@ (5a)

Nyy=&; Ai3cos2@ (5b)

NXY = N~X = ~ A@ sin 2@ - jKp. (5C)

Equation (4) is exactly equivalent to the coupled-mode equa

tion derived previously by Sakai and Kimura [20].

v(z) v

(a)

V2 ‘2
A

“2

*2

(b)

Fig. 1 (a) Cross section of a twisted birefringent fiber. (b) Cross sec-
tion of a single-mode fiber coupler.

Now consider fiber couplers made of two nominally circular

single-mode fibers [Fig. l(b)]. A subscript 1 or 2 is added to

the terms involved to identify the fiber involved. The coupled

mode equation for the coupler can be obtained from (4) by

adding terms representing the evanescent field coupling be-

tween fibers. Let KX and KY be the interflber coupling con-

stants pertaining to the interaction of -EX1 with E’xz, and Eyl

with EY2, respectively [26]. Then, the coupled-mode equa-

tion for the couplers becomes

If the spacing between fibers varies with z, so do K. and Ky.

In general, and even for couplers with uniform spacing, ll~~i,

iVYYi, NyXj, and NXYi are z-dependent, except for couplers

with nonbirefringent or untwisted fibers. Because of the

presence of these z-dependent terms, it is difficult to treat

(6) directly. However, it is convenient to transform (6) to the

local (u, u) coordinate system by a simple substitution, which

may be written as follows:

ix =T(O1, !P2)E’U (7)

where

~x = [&l Eyt J% EY21 f (8a)

& = [Eul Eul EU2 E“2 ] f (8b)
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[

Cosal -sin 01 0 0

1“

From the geometry of the coupler or from (10) and (13), it is

sin @l Cos ‘1’l o 0 obvious that there is no coupling between orthogonal polariza-

T(@l , m~) = (9) tions. In fact, such a coupler maybe considered as two inde-
0 0 Cos @2 - sin @2 pendent elementary couplers in parallel with an elementmy

o 0 sin @2 Cos Q2 coupler for each polarization

and the superscript t stands for the transpose of the matrix.
Exl (Z)

Then (6) becomes [1EX2 (X)
= exp (-j(13X1 + flX2) 2/2)

E: H

i; =-j[ii +C]-i’u (lo)

.-[1

Exl (0)

EX2(())
(14a)

where — —

[

/31 + 4A& No; - KP1 ) KCOS(O1 - @’z) KSir I(@L- 02)

-j(@: - Kpl ) & -$ API

1

-K sin (@l - @2) K cos (@l - OZ)j=
(11)

Kcos(@l - @Z) -Ksin(@l - %) ~Z + }A(3z j(@) - KP2 )

K sin (@l - CD2) K cos (Ql - @2) -j(Q\ - KP2) /32 - ; Aflz

J

o 0

1

cos (01 + @2) -sin (01 + q?z)

;= AK o 0 -sin (@~ + 02) -Cos (01 + (D2) ,-n\.
2

1

cos (@l + 02) -sin (01 + @z)

-sin (@l + @z) -cos(ol +@2)

and where K = (Kx + KY)/2 and AK= Kx - Ky. The coupler

pro~lem is solved by+using (7) to transform the input ~X(0)

to EU(OJ, solving for Eu(z) from (10) subject to the input con-

dition EU(0), then finally transforming ~U(z) to EX(Z), which

is the output of the coupler.

From (10), it is clear that for a given input SOP, the output

SOP would depend on the bire~ringence A~i, twisting rate @~

and KPi, orientation CPjof the fibers, and the anisotropy of the

interfiber coupling AK. The effects of these factors on the

polarization characteristics of the fiber couplers will be consid-

ered in the following sections. Strictly speaking, Kx # Ky, as

noted by Vanclooster and Phariseau [26] . For fibers com-

monly used in constructing couplers, AK<< K [9] . There-

fore, except in Section III, the terms associated with AK are

ignored and (10) is greatly simplified.

If the fibers are highly birefringent, as represented by fibers

with highly elliptical core or index ‘profdes, for example, the

field distribution ~U(r, ~) and ~U(r, J) would be J-dependent.

The interfiber coupling terms Kx and Ky in (6) would also be

functions of @l and @2, as would be K and AK in (10). Un-

der these circumstances the problem becomes more compli-

cated and we could not use the simple coupled mode theory as

developed here.

III. FIBER COUPLERS WITH NONIDENTICAL, UNTWISTED,

AND ALIGNED FIBERS

The simplest class of couplers to be considered is that made
of untwisted fibers cD;= O,KPi = O, with their major and minor

axes aligned with the x and y coord~ate;, i.e., 01 = @z = O.

Under these conditions, ix = ~U, and B + C in (10) becomes

F%+~A@~ O K. O 7

o 0 1
(1 ‘&.,

o 0

[1

‘Y1 ‘z) = exp (-~(/3Y~ + I$J2) ‘/2)

Ep (Z) [%:1

“[ 1

Eyl ((~)

EY2 (0)

where

(lf~b)

(15a)

(15b)

= lF’lixle-~O° (15C)

F12X = F21X = -j —=L
4K: + 6:

sin ({-z)

= IF12X le-in/2 (lSd)

L = (k - 6X2)D (l$ie)

and FiiY can be written identically with the subscript y replac-

ing x. Except for the phase terms exp [-j(j3Xl + &z) z/z],

exl? [-j(Byl + 13y2) z/2], (14a) and (14b) are individually
equivalent to the expressions obtained by Yariv [27] for the

elementary couplers, and collectively, they are equivalent to

the expressions derived for the fiber couplers by Sheem and
Giallorenzi [1], [2]. For couplers with nonbirefringent

fibers, or if only the total power carried by each fiber is of

interest, these phase terms are of no consequence. If the

fibers are birefringent, and if the fields associated with a polar-

ization and in a given fiber are of interest, then these phi~se

terms have to be accounted for.

To illustrate this point, consider a coupler made of identical
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fibers i-k = & = (L, Byl = 13Y2 =&, and ax = 8Y = O. SUp-

pose that a linearly polarized wave with an azimuth 0 is inci-

dent upon a fiber, referred to as the primary fiber

Exl (0)= EO COS o (16a)

Eyl (0)= EO sin 0 (16b)

and the input to the other fiber, referred to as the tap fiber, is

zero,

Exz (0)= EY2(0) = O. (16c)

Then the fields and the power in each fiber at an arbitrary

point z are [1], [2]

El(r, v,z)=EOe ‘ifixz [$ cos Kxz COS 6

+; COSKYZ sin 0 e-~(~y-~x) z f(r, ~)

E2 (r, ~, z) = -jEO e‘~6x z [~ sin Kxz cos O

+~ sin KYz sin 0 e-i(&&)zlf(r, ~)

~1 (z) ‘PO [COS2Kxz + Sill (& + Ky) Z

“ sin (KX - KY) z sin2 0]

Pz (z)= PO [sin2 Kxz - sin (Kx + Ky) z

. sin (Kx - Ky)z sin2 O]

(17a)

(17b)

(18a)

(18b)

where I’. is the total power fed into the primary fiber at z = O.

While the effect of fiber birefringence ~x - & on the output

SOP is obvious, it has no effect on the power carried by each

fiber. As expected, the total power PI + P2 carried by two

fibers is conserved. Unless Kx = Ky, the fraction of power

PI/P. or P2 /P. at the point z carried by each fiber would

depend on the azimuth of the linearly polarized input. In fact,
one can estimate the coupling anisotropy Kx - Ky by measur-

ing PI [P. and Pz /P. as functions of O, provided Kx = Ky

which is valid in the weakly guiding approximation of small

An. Considering a coupler of length L, let Pimax and Pimin be

the maximum and minimum output power from fiber i as O

varies. Then it can be shown from (18a) and (18b) that

(19a)

if

sin (Kx +KY)L sin (Kx - KY)L >0

and

[ 1

~ PI ~~~ - P1 ~in
I(KX - KY) LI - ‘in-’ 2 ~pl ~axp2 tnin (19b)

[1

Exl (Z)

[

l~llxl o

Eyl (Z)
= exp (-j(Oilx + 1911YW) o

F’ttyl 1

fexp - j(A& + A~,)z/4 0

if sin (Kx + Ky) L sin (Kx - Ky) L <O. Inmost casesobserved

[28] the variation of PI /P. (or P2 /Po) is only a few percent of

the average value of PI /PO (or Pz /P. ), so (19a) and(19b) are

approximately equivalent.

The output SOP is quite complicated even for the simple

couplers with untwisted and aligned fibers considered here.

In general, the output is an elliptically polarized beam, which

can be characterized by the visibility Hi’, the azimuth [i.e.,

the orientation of the major axis of the polarization ellipse

with reference to a given coordinate system] , and the sense

of rotation [29], [30]. These parameters are experimentally

measurable. Usually, the output is examined by an anrdyzer

followed by a Power meter. Let Pmax and Pmin be the maxi-
mum and minimum reading of the detector as the anrdyzer is

rotated. Then, the visibility is defined as [30]

KS= (Pmax - pmin)/(pmax + Pmin). (20)

For a linearly or circularly polarized beam, the visibility is,

respectively, 1 or O. Fig. 2 shows the risibilities on both fibers

and power coupled to the tap fiber for a nominally 3 dB cou-

pler with untwisted, aligned, and nonidentical fibers. An

examination of (10) and (13) reveals that the results will re-

main unchanged when all linear dimensions, including the

wavelength, are scaled by a constant factor. Therefore, & is

chosen as 1.0 arbitrarily and all parameters are left dimension-

less. Since the fibers are not identical, the variation of the

visibility will depend on the fiber involved and on the excita-

tion. In Fig. 2, VS’ii and KSfi are plotted as function of 6,

where VSij is the visibility on fiber i when the input power

is on fiber j, and VSfi is the visibility on the fiber i when the

other fiber is absent (i.e., zero coupling). Note that VS1~

and VSf ~ are almost the same, as are VS2z and VSf2. In other

words, the visibility of the primary fiber is essentially the same

as that of the fiber alone and the presence ~f the tap fiber has

only a small effect. Also note that VS12 = VS2 ~, i.e., the

risibilities on the tap fiber are identical no matter which fiber

is the primary fiber. Therefore, for nonidentical, aligned

fibers without twist, interchange of the input fibers affects

only the SOP of the primary fiber, not the SOP of the tap

fiber or total power on either fiber. Also shown in Fig. 2 is

the fractional power Pt transferred to the tap fiber as a func-

tion of O. The variation of Pt is due to the anisotropy of inter-

fiber coupling as expressed by (19a) and (19b). If Kx = Ky,

Pt is essentially independent of 0.

Instead of enumerating the variations of the output power

and output SOP for all possible input SOP, it is convenient to
use Jones’ matrices to summarize the relationship between the

input and output SOP. A Jones matrix can be written for each

path. Once the Jones matrix is known, an ELER can be syn-
thesized. For example, the relation between (EX1 (0), Eyl (0))

and (Exl (z), Eyl (z)) can be extracted from (14a) and (14b)

and arranged as follows:

[

exp - j(OllX - L911Y)/2 o

0
1exp +j(Ollx - 1911Y)0

(21)

1 [1

Exl (0)
(exp - j(/31 + 62) z/2) ~ (o) .

exp + j(A/31 + A/.32) 2/4 yl
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Fig. 2. Polarization characteristics of a coupler with nonidentical, un-
twisted, and aligned fibers.
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~–jA pm “1 p, 01
10 ~–j8/2J

Fig. 3. Equivalent lumped element representation for couplers with nonidentical, untwisted, and aligned fibers.

The8e exponential terms and the (2X 2) matrices represent,

respectively, a constant pha8e delay element ((611X + 6 I I ~)/2),

a partial polarizer with unequal principal transmittances, a,

linear retarder with retardation - (6 ~lx -6 ~~~), another re~

tarder with retardation - (A@l + A@z) z/2, and another delay

element ((31 + /3z) z/2 [23], [24], [30]. The ELER for this

path, together with that of the other coupler paths are shown

in Fig. 3.

Note that for the 8imple case considered here, no rotator is

involved and the principal axes of all lumped elements are

aligned with the x-axis,, If Kx = Ky, and if the fibers are

identical, we have Onlx = O1lY = O, and IF’llXI = IF1lYI,

U712XI = l~12yl. Then the retarder and the con8tant phase

delay element as80ci8ked with 6 ~lx * 6 ~~Y disappear and the

partial polarizer8 become simple i80tropic absorbers. The

ELER is. greatly simplified as 8hown in Fig. 4. The elements

enclo8ed in the da8hed, boxe8 can be identified as the ELER

for the untwi8ted fibor8. The effects of interfiber coupling are
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Fig. 4. Equivalent lumped element representation for couplers with identictd, untwisted, and aligned fibers,

reflected only in the isotropic absorbers and 7r/2 phase delay Since the symmetric and antisymmetric modes are uncoupled,

elements. Thus, for isotropic coupling with untwisted, iden- analytic solutions may be written immediately which in turn

ticaS, and aligned fibers, the SOP of the output of the coupler can be transformed to ~U

(24)

is identical to the output SOP of the fibers with the same bire-

fringence and length.

IV. FIBER COUPLERS WITH IDENTICAL, UNTWISTED, AND
UNALIGNED FIBERS

Of all the assumptions made in the last sections, the assump-

tion of alignment, i.e., 01 = Oz = O is probably the most un-

realistic one. It is therefore desirable to understand the effec;

of misalignment (@l # @z) on the polarization characteristics

of the coupler. To reduce the complexity of the problem,

we assume that the fibers are identical (~1 = /3z = ~, A(31 =

A@z = A@) and interfiber coupling is isotropic (AK= O). For

untwisted fibers, @i is a constant @i, and Kp i vanishes. Then

~ = O and ~ becomes

0
j=

where

Fll zcosxz-j
A~ + 2K COS (@l - @2) Sinxz

2x
(25)

F14 =j
K sin (@l - q$2) sin X2

x
(26)

F33 = cos Yz - j
A~ - 2K COS(@l - @z) sin Yz

2Y
(27)

F3Z = -j
K Sill (@l - @2) sin ~z

Y
(28)

and

LKSW, -h) KcOS(@, - 0,) O ~-~A~ d

The coupled-mode equations (10) and (22) may be further

simplified by defining symmetric (Eu~, EJ and antisymmetric X= [(K COS(@l - @z)+; A(i)’

(Eua, Eva) modes

~j=~~;;:l~] 23’ ~ Y~~c:{:I::? :
To relate ~X(z) with EX(0), it is only necessary to use (24) in

conjunction with (7). More specifically, the relationship be-
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tween (Ii’xl (z), Eyl (z)) and (E’xl (0), (E’YI(0)) is

“[

Fll +F33 F14 +F32

1[

cos @l sin f#J1

F14 +F3Z F;l +F;3 1-Sinq+ COSQ51

“[ 1

EX1 (0)

Eyl (0) “
(31)

The first and third square matrices correspond to rotators. It

can be shown that the second matrix is a product of a constant

2~~, and unitary matrix

. (Fll + F33)/(2<~) (Fl, + F3,)/(2<~)

[ (Fl, + F3,)/(2<~) (F;l + F:3)/(2<~) 1

where

Pt = sin2 (x+ Y) 2/2 -
XY - (K2 - A~2/4) sti Xz sin ~z

2XY
(32)

is the fraction of power transferred to the tap fiber. The con-

stant factor <~ corresponds to an isotropic absorber with

two equal principal transmittances. The unitary matrix is

equivalent to a retarder placed between two rotators [24].

Thus, all elements of the ELER representing the relationship

between (EX1(0), Eyl (0)) are known. Fig. 5 displays the
ELER for isotropic coupling with untwisted, unaligned, and

identicrd fibers. Also given there are expressions for all ele-

ments of the EJ.,ER. In the special case @l = ~z = O, Figs. 4

and 5 become identical, as expected.

The effect of misalignment can be understood as follows:

when 41 = 42, Eus, Eua, Ev~, and Eva are four uncoupled or-

thogonal modes with propagation constant ~ * ~ A/3+ K.

When the fibers are misaligned, the modes become coupled,

Eu~ with Eva, and Eua with EUS, with coupling constants
+K sin (@l - @2). The propagation constants are also chmged,

thus affecting the retardations ti ~~, ti ~z defined in Fig. 5 and

the transmittance of the absorbers. However, the unitary

character of the transfer matrices remains unchanged.

To study the polarization characteristics of couplers with

visibility at some value of 6. The results are shown in Fig. 6

which displays the minimum visibility on the primary fiber

(~~~)min and on the tap fiber (VS’t)min as functions of
L/LBB. Also shown there is the minimum visibility (VSf)min

due to the birefringent fiber alone. Note that the (lTi’P)min

curve follows closely to that of ( VS’f)min, particularly in the

region where L/LBB is :smrdl. As L/LBB increases, the effec ts

of interfiber coupling and misalignment become more evident.

The difference between (FWt)min and (VSf)min is quite notice-

able especially in the re,gion L/LBB -0.5. The effect c~f

01- #12 On (VS )p min and ( JWt)min has &O been examined.
It is interesting to note hat when @l - @2= f90°, the output

on the tap fiber is always linearly polarized, ( P’lii’t)min = 1, fclr

any linearly polarized input. Mathematically, this can be

deduced from the fact that ~ 12 = O when @l - @2= *90C’.

Physically, it may be understood as follows. When @l - @2‘=

f90°, the fast mode of fiber 1 is coupled with the slow mode

of fiber 2, and vice versa. Thus, the coupling between one set

of modes (i.e., the fast lmode of fiber 1 with the slow mode of

fiber 2) is exactly the same as the coupling between the other

set (i.e., the slow mode of fiber 1 with the fast mode of fiber

2). Then the output SOP on the tap fiber is exactly the same

as the input SOP. Conceptually, this leads to the possibility

of constructing couplers,, with polarization maintaining proper..

ties on the tap fiber, frc)m any birefringent fibers. Of course,

the fiber alignment is critical and fibers have to be handled in

a way that no extraneou~ b irefringence is introduced.

V, FIBER COUPLERS WITH TWISTED FIBERS

In this section, couplers with twisted fibers are considered.

We assume that the fibers are twisted uniformly and with

identical twist rate ~

@i(Z) =&Z + @i. (33)

@j is the orientation of fiber i at z = O. Then 01- @2 “

o, - @2. Since Kpi is proportional to the twist rate, [15] -[18]

KPI ‘KP2 = Kp. Under these conditions, and with &= O,

(10) again reduces to al set of simultaneous equations with

constant coefficients. To identify the effect of twisting, we

begin by considering a simplified situation: couplers withl

identical and aligned llbers (131= 132= (3, A(31 = A62 = A(3,

@l = @Z). Then the term K sin (@l - %) in (11) vanishes,,
Again symmetric and antisymmetric modes can be defined as

in (23) and analytic solutions become available.

[H
Eul (Z) Gll COSKZ Glz COS Kz

1[ 1

-jG1 ~ sin Kz -jG1 ~ sin Kz Eul (0)

Evl (Z) -G12 COS Kz G~l COS Kz jG,2 sin Kz -jG ?, sin Kz E.,(0)
e-j(3z

Eu~ (Z) = -jG1 ~ sin Kz -jG1 ~ sin Kz Gll COSKZ G12 COSA~Z EU2(0)

EV2(Z) jG12 sin Kz -jG~l sin Kz -G12 COSKZ G~l cm Kz EV2(0)

unaligned fibers, we consider the evolution of the output where

SOP with a linearly polarized input [(16a), (16b)]. As the
azimuth 6 of the input polarization changes, the visibility of Gll =coszz-j~sin~z
the output would vary between 1 and a minimum value. To

be specific, 3 dB couplers are considered. For a given fiber
G,, =~sinZz

birefringence A& misalignment @l - @2, and coupler length

z = L, a value for K can be determined such that Pt = ~.

From A~, q+ - @2, L, and the value of K so obtained, 61 ~ and
Z = [($ - KP)2 + A~2/4] 1/2.

6 ~z can be computed, which in turn leads to the minimum Following the procedure established in the previous sections,
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Fig. 7. Equivalent lumped element representation for couplers with identical, twisted, and aligned fibers.

the ELER can be obtained (Fig. 7). The lumped elements en-

closed by the dashed lines are exactly those for uncoupled

twisted fibers alone. The effect of interfiber coupling between

the fibers is reflected only by the presence of the isotropic

absorbers (COSKz or sin Kz) and the 7r/2 phase delay element

in the crossover branch. This is reminiscent of isotropic cou-

plers with untwisted, identical, and aligned fibers. In particu-

lar, it is noted that the retardance is

[1

Afl
8t=-2sin-1 — sin Zz .

22
(35)

If the fibers are not twisted, (~= Kp = O), tit= -A/3z which is

precisely the retardance given in Fig. 4 for the case without

twist. As the twist rate increases, the retardance 6 ~ oscillates

with a decreasing amplitude. In fact, for couplers with heavily

twisted fibers, i.e., /~ - Kp I >> A/3, (35) reduces to

6tE-A13Z
sin (1$ - Kplz)

I!- KPIz
(36)

which shows how a high twist rate overrides the effect of the

linear birefringence A~. In this high twist rate limit, the

normal modes of the coupler become circularly polarized in

opposite directions [25 ], resulting in a linearly polarized out-

put for a linearly polarized input. This suggests another ap-

proach to making a coupler which preserves linear polarization,

providing sufficient twist could be imparted to the fibers over

the interaction length of the coupler.

We cannot treat the case of nonidentical twist in fiber cou-

plers because the @2 - @l terms in (10) become z-dependent

and an analytical solution is no longer possible. We would

expect that the isotropic feature of the absorbers in Fig. 7

would be lost in an amount depending on the difference in the

twist rates. However, the high twist limit, as discussed above,

should still qualitatively apply.

As long as the fibers are twisted equally, a general algorithm

may be used to study (1 O), even though the fibers are noniden-

tical (131#&, A131# A13*) and/or unaligned (@l # @2). Let

Ai be the ith eigenvalue a~d ~i ~e the corresponding eigen-

vector of ~(i = 1-4). Then Q and P can be constructed

[

e.xp - jA1z o 0 0

exp - jA2 zQ= : 0 0

0 exp - jA3 z o

0 0 0 1exp - j~ z

(37)

F= [PI F2 ?3 }4] (38)

and the solution of (10), subject to the initial condition fiti(0),

can be written as

iu(z) = F@-liu(o). (39)

In terms of the stationary coordinate systems

ix(z) = T($Z + @~, .gZ+ f#)2)FQ@ T(-@l , -@2) Ex(o).

(40)

This general algorithm has been used to calculate the polariza-

tion characteristics of couplers with twisted but nonidentical

and unaligned fibers. As the previous case the visibility ap-

proaches unity in the high twist limit. This is illustrated in

Fig. 8 where risibilities for primary JW1~ and tap K912 fibers

in a nominal 3 dB coupler are plotted versus the input azimuth

O for increasing twist rates. The parameters used correspond to
couplers with a coupling length of 4.0 mm, constructed from

birefringent fiber with LBB = 7.5 cm, and twisted at a rate of

O, 0.1, 0.5, and 1 turns/cm. The initial misalignment is @2-

0, = 45°. It is interesting to note that the mechanical strength
of glass would limit the maximum twist rate to 10 turns/cm
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Fig. 8. Effect of twieting on the polarization CharaCte1i8tiCSof cou
plere with nonidentical, twisted, and unaligned fibers.

[31 ] and it has also been reported that fibers maybe twisted

by 1 turn/cm without breaking [32].

The effect of the initial misalignment @2- @l on couplers

with twisted fibers has also been investigated. We find similar

behavior to the effect of alignment without twist, as discussed

in Section IV. The tap fiber visibility approaches unity as

Ir#12- @lI s 90°, while the primary fiber visibility is not sig-

nificantly affected.

It would be desirable to have an ELER for the couplers with

twisted, but nonidentical or nonaligned, fibers as well. The

equivalent representations for ~(-~1, -02) and ~(&z + @l ,

ijz + @2) are simply a rotator at each end of the fibers. How-

ever, the ELER for }Q}-l is quite complicated. ~@-l, a

4 X 4 matrix, can be subdivided into four Jones matrices,

with one for each of the four paths between the input and

output ports. Numerical calculation showed that these Jones

matrices are not unitary nor are they the products of a con-

stant and a unitary matrix. An exact ELER for each path

would consist of a partial polarizer, two retarders, and a ro-

tator, according to Hurwitz and Jones’ theorem [24].

VI. DISCUSSION AND CONCLUSIONS

There are two additional complications in the fabrication of

real couplers that we have not considered in our analysis. First

is the addition of induced nonuniform birefringence caused by

the fabrication of the coupler to the intrinsic uniform fiber bi-

refringence which we have modeled. Considering the fabrica-

tion methods employed in all the couplers of references

[1] -[9], it seems that none would be free from these effects.

Twisting, fusing, polishing, and fixing with epoxy or glass-gel

would all induce or alter the intrinsic birefringence of the

fiber. Additionally, even the very low birefringence fibers fab-

ricated by perform spinning are susceptible to this difficulty.

Second is the effect of the birefringence in the fiber leads,

which are required to access the coupling re@on. In prin-

ciple the fiber leads can be modeled by lumped element

representations and placed in series with that of the coupler

to characterize the transmission matrix of the coupler as

a whole. If the induced or intrinsic birefringence of the

leads is substantial, however, they cannot be neglected.

Some experirnentaJ results have been reported by Sheem and

co-workers [2], [4] and additional data have also been ob-

tained by Koo and Villarruel [28]. These experimental results

are in qualitative agreement with those presented in this work.

Since the precise rate of twisting in the coupling region is not

known and it is difficult to separate the effects of the fiber
leads and birefringence induced by packaging from the con-

tributions from the coupler, a quantitative comparison is not

feasible. However, we expect that the treatment provided here

will aid in the interpretation of future experimental work.

In the previous sections, the following three idealized classes

of couplers were studied in detd:
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1) couplers with nonidentical, untwisted, and rdigned fibers

with anisotropic interfiber coupling, (& + /J2, A(31 # A@2,

& ‘t2 ‘0,01 ’02 =oj&+~y)>

2) couplers with identical, untwisted, misaligned fibers with

isotropic interfiber coupling (~1 = /J2, A~l = A/Jz, & = &2 = O,

01 #02, Kx = Ky), and

3) couplers with identical, uniformly and equally twisted

aligned fibers, and isotropic inter-fiber coupling (/31 = 62,

A(J1 ‘Ai32, t1 ‘$2 +0,01 ‘4Q, KX=KY).

From these studies, the effects due to nonidentical fibers,

anisotropic interfiber coupling, misaligmnent, and fiber twist-

ing have been identified. An exact equivalent lumped element

representation (ELER) was obtained for each class of coupler

and these representations are particularly helpful in under-

standing the polarization characteristics of the fiber coupler.

If we consider identical fibers with isotropic coupling for the

cases of aligned axes 1) and aligned axes with equal twist 3),

we see from Figs. 4 and 7 that coupling has no effect on the

SOP in the fibers whatsoever. The polarizer elements are iso-

tropic. As noted previously a partial polarizer with two equal

principal transmittances is really a simple isotropic absorber

[23], [24]. For these two classes of couplers the SOP is

determined completely by the intrinsic and induced (by twist)

birefringence in the fibers. When identical fibers are unaligned

[case 2)], the situation is more complicated in that now the

SOP is perturbed by the act of coupling itself. However, in

this case, the polarizing element in the lumped model is still

isotropic so that the power coupled is still independent of

input polarization (for KX = Ky). We show in Fig. 6 that in

the worst case, for small vahres of L/LBB, the output risibilities

are of the same order as the worst case visibility in a single

fiber with the same birefringence. Finally, in the apparently

simple case of Fig. 3, where nonidentical fibers with real aniso-

tropic coupling are aligned, we have the most complicated case

with the output SOP complicated by the presence of the par-

tial polarizers in the ELER, which represents polarization
dependent coupling. However, we know these effects will

be small because real couplers, to date, are made from fiber

from the same sample and the anisotropy in K is small, 5 per-

cent or less [9]. Although our examples are obviously over-

simplified, we use a similar argument to extend our results to

a real coupler, i.e., we expect in a real coupler that the devia-

tions from our assumptions will be relatively small and that

we can conclude that the primary determinant of the SOP in

a fiber coupler is the intrinsic and induced birefringence in the
fibers used to make the coupler. Our assumption of identicrd

twist is the weakest in this regard since identical twist is not

likely to occur in a real coupler unless deliberately induced.

In each of the equivrdent lumped element representations

the power coupling fraction is represented either by isotropic

absorbers in an idealized case, or by partial polarizers in more

generally anisotropic cases. We note from the work of Jones
et al. [23], [24] that these seemingly complicated representa-

tions for each path can be replaced by a single rotator, a single

retarder, and an isotropic absorber, in the cases where the

transfer matrix is unitary, and by two retarders, an anisotropic

partial polarizer, and a rotator, when the transfer matrix is not

unitary.

We have identified two special cases where fiber couplers

maintain linear polarization for arbitrary input azimuth.

These include the case of !20° misaligmnent where the tap fiber

has a constant unity visibility, and the case of high uniform

twist where both outputs approach unity visibility in the

high twist limit.

It is of interest to consider the implications of our results to

couplers fabricated with h.igh-birefringence or polarization

maintaining fibers. Although we have restricted our analysis

to cases where the index or geometrical ellipticity is not too

large, our results should at least qualitatively apply to high

birefringence fibers as well. The advantage of high bire-

fringence would be that polarization would be maintained

even in the presence of weak induced birefringences. It is ob-

vious from Fig. 5 that the fibers would have to be aligned at

0°, in which case the linear input would also have to be aligned,

or at 90°, in which case only the tap fiber would have unity

visibility. Probably the largest experimental problem, after

alignment, would be to avoid the relaxation of the high bire-

fringence during coupler fabrication.
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