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Polarization Characteristics of Single-Mode
Fiber Couplers

CHIN-LIN CHEN anp WILLIAM K. BURNS, MEMBER, IEEE

Abstract—The polarization characteristics of fiber couplers made of
birefringent single-mode fibers are studied. The effect of anisotropic
interfiber coupling, fiber birefringence, angular misalignment of fibers,
and twisting on the coupler characteristics are identified, The polariza-
tion characteristics of the couplers are compared with that of isolated
uncoupled fibers of the same birefringence and length. The equivalent
lumped element representations for three classes of fiber couplers are
also presented,

I. INTRODUCTION

INCE low-loss single-mode optical fibers have become avail-
Sable in long lengths, many communication links and sensor
systems have been developed to take advantage of the proper-
ties offered by these fibers. Obviously, means must be found
to monitor the optical beams guided by the fibers, to divide a
beam into two or more paths, or to combine two or more
beams into one. An optical directional coupler is a basic struc-
ture for achieving these objectives. Methods of etching and
twisting [1]-[5], fusing [6], [7], or polishing [8], [9] have
been reported to construct couplers from existing single-mode
fibers. Couplers can also be formed by drawing preforms with
a twin core [10], [11]. These couplers have been used in
many fiber optic systems. For many applications, optical in-
terferometric systems, for example, the polarization character-
istics of the coupler are a crucial factor affecting the stability
and sensitivity of the system. In this work, the polarization
characteristics of single-mode fiber couplers will be studied.

For an ideal stress-free untwisted fiber with a perfectly cir-
cular core and cladding and a rotationally symmetric index
profile, the 1Py, mode is the lowest order mode in the weakly
guiding approximation. The transverse electric field of the
LP,, mode is linearly polarized along a direction and is inde-
pendent of the azimuthal variable ¥/, and the longitudinal elec-
tric field has sin Y or cos Y type variation [12]. For the ideal
fibers under consideration, any two orthogonal directions may
be chosen as the reference directions, and an LPy; mode with
an arbitrary state of polarization (SOP) may be considered as
the superposition of LPy, modes polarized along two reference
directions. In reality, the core of a fiber is only nominally cir-
cular and can be subject to internal stress which results in in-
duced birefringence [13], [14]. Thus, conceptionally, we
may envision a fiber as having an elliptical core or an elliptical
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refractive index profile. It is natural to choose the directions
of the major and minor axes of the ellipse as the reference
directions. Except for polarization maintaining fibers, the
major and minor axes differ only slightly, of the order of a few
percent, so that the description in terms of LP,, modes re-
mains a valid approximation. Now the LPy; mode polarized
along the major axis propagates with a velocity slightly dif-
ferent from that polarized along the minor axis. Therefore,
real single-mode fibers are double-moded with two nondegen-
erate LPy; modes. Letf % A be the propagation constants
of the LPy; modes polarized along the major and minor axes,
respectively. In the absence of any external perturbation, the
evolution of the SOP in the fiber is a result of the interference
of these two eigenmodes, It is customary to introduce the bi-
refringent beat length Lzg = 2n/AB to characterize the bire-
fringence of the fiber. If the fiber is additionally subjected to
stress from bends or twists, additional birefringence is induced.
These additional birefringences would cause coupling between
the fiber eigenmodes just described, and thus affect the evolu-
tion of the SOP. The change of fiber birefringence due to
bending and twisting has been studied by Ulrich er al. [15],
[16], [18], and by Smith [17]. Insummary then, the evolu-
tion of the SOP in a twisted and/or bent and birefringent
single-mode fiber depends on Af and the rate of twisting
and/or degree of bending of the fiber [19]-[22]. For single-
mode fiber couplers, an additional factor is involved due to
coupling between the fibers. In the next section, a coupled
mode equation, containing these and other coupler param-
eters, is established to describe the evolution of the SOP. To
facilitate general understanding and to illustrate the roles
played by various parameters, three idealized classes of couplers
with increasing complexity are studied in Sections III-V
before the general case is considered. Instead of examining all
possible variations of the output SOP as a function of the
input SOP, we find it useful to use Jones’ matrices to describe
the relations between input and output SOP [23], [24]. From
the Jones matrix, an equivalent lumped element representation
(ELER) may be found for each path between input and output
ports. All elements of these ELER’s are identified and pre-
sented in Sections ITI-V.

For three idealized classes of couplers the Jones matrices are
particularly simple and can be represented by products of uni-
tary matrices and a constant representing power transfer. This
implies that each path can be modeled by a rotator, a retarder,
and an isotropic absorber [24]. We show that, in these ide-
alized cases, the evolulion of the SOP in the coupler is con-
trolled primarily by the birefringence of the fiber and that the
impact of interfiber coupling on the SOP is relatively small or
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zero. In the real couplers, then, our results imply that the
impact of the interfiber coupling on the SOP is second order
compared to the impact of the intrinsic fiber birefringence and
the birefringences induced in the fibers in the process of fabri-
cating the coupler.

II. CouPLED-MODE EQUATIONS

We begin by considering a single twisted birefringent fiber.
The axial direction of the fiber is chosen as the z-axis. Fig.
1(a) depicts the cross section of the fiber at z. An elliptical
core is drawn to represent a birefringent fiber with either an
elliptical core or an elliptical refractive index profile. For
convenience, the directions along the major and minor axes
are also used as the local coordinate system (u,v). Since the
fiber may be twisted, the angle ® between u-axis and a labora-
tory or stationary x-axis can be a function of z,i.e., ® = ®(2).
If the fiber is not twisted, the field in the fiber is the super-
position of two orthogonal modes propagating with propaga-
tion constants § £ L A

E(r, ¥, 2) =UE,(2) f,(r, ¥) + VE,(2) £, (r, ¥) )

where E,,(z) and E\(z) vary like exp (-j(8 £ % Ap) z) with con-
stant amplitude, and f,,(r, ¥) and f,(r, ¥) describe the distribu-
tion of the fields of LPy; modes polarized in # and v direc-
tions, respectively. For the nominally circular fibers discussed
in this work, f,, and f, are independent of y and f,, = f,. We
will ignore these functions henceforth. If the fiber is twisted,
(1) may be used to approximate the fields with the mode
amplitudes £,(z) and E,(z) governed by a coupled-mode
equation [22], [25]

[EL] _ [-]'(ﬁ +34p ¥'-K, ] [Eu]
E,] @' -K,) -j(B- 3 4B LE,

where a prime signifies differentiation with respect toz. Also
included in (2) is the birefringence induced by twisting via the
photoelastic effect of the fiber and it is represented by the
term K, [15]-[19]. The mode amplitudes E,,, E, in the ro-

tating coordinates are related to E,, E, in the stationary
coordinates

E,] [cos® -sin® 7 [E,

Ey sin ® cos® E, |
The coupled-mode equation for £, and £, can be obtained by
substituting (3) into (2)

@

3)

] ) L]

Ey Nyx Nyy Ey

where
Nyx =B +4 ABcos2d® (52)
Ny, =8~ 3 ABcos2® (5b)
Nyy =Ny = 5 ABsin 20 - jK,. (5¢)

Equation (4) is exactly equivalent to the coupled-mode equa-

tion derived previously by Sakai and Kimura [20] .
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Fig. 1 (a) Cross section of a twisted birefringent fiber. (b) Cross sec-
tion of a single-mode fiber coupler.

Now consider fiber couplers made of two nominally circular
single-mode fibers [Fig. 1(b)]. A subscript 1 or 2 is added to
the terms involved to identify the fiber involved. The coupled
mode equation for the coupler can be obtained from (4) by
adding terms representing the evanescent field coupling be-
tween fibers. Let K, and K, be the interfiber coupling con-
stants pertaining to the interaction of E,; with Ey,, and £,
with Ey,, respectively [26]. Then, the coupled-mode equa-
tion for the couplers becomes

E;cl Nyx1 Nyt K, 0 Ey{
Ey Nysi Ny 0 Ky By ©)
El Ky 0 Nexz Nupa || Exe
Ey, 0 Ky Ny Nypa|{ Ey

If the spacing between fibers varies with z, so do K, and K,,.
In general, and even for couplers with uniform spacing, Ny,;,
Nyyi, Ny, and Nyy,; are z-dependent, except for couplers
with nonbirefringent or untwisted fibers. Because of the
presence of these z-dependent terms, it is difficult to treat
(6) directly. However, it is convenient to transform (6) to the
local (#, v) coordinate system by a simple substitution, which
may be written as follows:

)

Ex = T(Cbl s (1)2)5'14
where
Ey=1Exy By Exy Epnl’ (83)
E,= By En Ep Enlt (8b)
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cos®; -sin P, 0 0
i"(ti)l @)= sin &; cos P, 0 0 ©)
0 0 cos®, -sin b,
0 0 sin &, cos D,

and the superscript ¢ stands for the transpose of the matrix.
Then (6) becomes

E,=-jiB+C] B, (10)
where

By + % ABy J (P - Kpl)

§‘ ‘f(‘bi = Kpl) B1 - %Aﬁl
KCOS (q’l - @2) “K Sin ((I)l - ¢2)
Ksin (®; - ®,) Kcos (P, - &)

0 0
~ AK 0
C=— 0

2 Cos (@1 +q)2) ~-sin ((I)l +q)2)

-sin (@, +®,) -cos(®, +&,)

and where K = (K, +Ky)/2 and AK =K, - K;,. The coupler
problem is solved by using (7) to transform the input £ x(O)
to E 4(0), solving for Eu(z) from (10) subject to the input con-
dition £,,(0), then finally transforming E ,(2) to E,(z), which
is the output of the coupler. .

From (10), it is clear that for a given input SOP, the output
SOP would depend on the birefringence AB;, twisting rate ®;
and K,;, orientation ®; of the fibers, and the anisotropy of the
interfiber coupling AK. The effects of these factors on the
polarization characteristics of the fiber couplers will be consid-
ered in the following sections. Strictly speaking, K, # K, as
noted by Vanclooster and Phariseau [26]. For fibers com-
monly used in constructing couplers, AK <<K [9]. There-
fore, except in Section III, the terms associated with AK are
ignored and (10) is greatly simplified.

If the fibers are highly birefringent, as represented by fibers
with highly elliptical core or index profiles, for example, the
field distribution f,(r, ¥) and f,(r, ¥) would be y-dependent.
The interfiber coupling terms K, and K, in (6) would also be
functions of ®; and ®,, as would be K and AK in (10). Un-
der these circumstances the problem becomes more compli-
cated and we could not use the simple coupled mode theory as
developed here.

III. FiIBER COUPLERS WITH NONIDENTICAL, UNTWISTED,
AND ALIGNED FIBERS

The simplest class of couplers to be considered is that made

of untwisted fibers &} =0, 7(“ =0, with their major and minor

axes aligned with the x~and y coordinates, ie., ®; =P, =0.
Under these conditions, £, = E,,, and B + C in (10) becomes
By + % AV 0 K, 0
N 0 -1A 0 K
B+C= Bl 2 Bl . y
K, 0 B2t 7 AB, 0
0 K, 0 B, - & AB,
(13)
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From the geometry of the coupler or from (10) and (13), it is
obvious that there is no coupling between orthogonal polariza-
tions. In fact, such a coupler may be considered as two inde-
pendent elementary couplers in parallel with an elementary
coupler for each polarization

Ex(@) Fias
= exp (~j(Bys * By )2/2)[ ]
[Exz( )] ' ? lex F22x
Exl (0)
[Exz (0)] (e
K cos (@, - ®,) Ksin(®, - &)
-Ksin (®, - ®;) K cos(®, - ®,) (11)
B + %Aﬁz J(®s - Kpy)
J(®-Kp)  B- 348,
cos (P, +®;) -sin(P; +®,)
-sin (@, +®@,) -cos(P; +P,) (12)
0 0
0 0
Ey(2) 12y}
8 2
[EyZ( )] P T+ Bra) 2l )[ley Faay
_ [E y1(0)] (14b)
E,(0)
where
Bui=Bi+ 3 AP, (i=1lor2) (152)
Byi=Bi- 3 AB; (15b)
Frix = Fipy =cos (VKE +832)
- -——————-~___— - sin (VK2 +827)
- |F11x|e 1911 (150)
K,
Fizp =F,y15 =~j— \/K2 52 sin (VK2 +52z)
- IFllee-—]Tr/z (15d)
85 = (Bur - B2)I2 (15¢)

and F;, can be written identically with the subscript y replac-
ing x. Except for the phase terms exp [-7(By1 +Bx2) 2/2],
exp [-7(Byy +B2)z/2], (14a) and (14b) are individually
equivalent to the expressions obtained by Yariv [27] for the
elementary couplers, and collectively, they are equivalent to
the expressions derived for the fiber couplers by Sheem and
Giallorenzi [1], [2]. For couplers with nonbirefringent
fibers, or if only the total power carried by each fiber is of
interest, these phase terms are of no consequence, If the
fibers are birefringent, and if the fields associated with a polar-
ization and in a given fiber are of interest, then these phase
terms have to be accounted for.

To illustrate this point, consider a coupler made of identical
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fibers Byy =Bxy =Bx, By1 = Bys =By, and 8, =8, =0. Sup-
pose that a linearly polarized wave with an azimuth @ is inci-
dent upon a fiber, referred to as the primary fiber

E(0)=Eq cost
E,(0)=E, sin 0

and the input to the other fiber, referred to as the tap fiber, is
Zero,

E,(0)=Ey,(0)=0. (16¢)

Then the fields and the power in each fiber at an arbitrary
point z are [1], [2]

E\(r,¥,2)=E, ¢ 1Pxe [X cos K,z cos @

+3 cos K,z sin 0 PRAC LR

(16a)
(16b)

(172)
E,(r,v,z)=-jE, e_jﬁxz [% sinK,z cos 8
+3 sink,zsin 6 e_j(ﬁy—ﬁx)z]f(r, )
(17b)
Py(z) =P [cos® Kxz +sin (K, +K,)z
-sin (K, - K,) z sin” 6] (18a)
Py(2) =P, [sin® Ky z - sin (Ky +K,) z
~sin (K - Ky) z sin® 8] (18b)

where P, is the total power fed into the primary fiber at z = 0.
While the effect of fiber birefringence 8, - 8, on the output
SOP is obvious, it has no effect on the power carried by each
fiber. As expected, the total power P; + P, carried by two
fibers is conserved. Unless K, =K, the fraction of power
P, /Py or P,/P, at the point z carried by each fiber would
depend on the azimuth of the linearly polarized input. In fact,
one can estimate the coupling anisotropy K, - K, by measur-
ing Py [Py and P, [P, as functions of 0, provided K, ~K,
which is valid in the weakly guiding approximation of small
An. Considering a coupler of length L, let P; .« and P; i, be
the maximum and minimum output power from fiber i as 9
varies. Then it can be shown from (182) and (18b) that
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if sin (K + K,) L sin (K - K) L <0. Inmost cases observed
[28] the variation of P, [P, (or P, [Py) is only a few percent of
the average value of P, [P, (or P, /Py), so (192) and (19b) are
approximately equivalent.

The output SOP is quite complicated even for the simple
couplers with untwisted and aligned fibers considered here.
In general, the output is an elliptically polarized beam, which
can be characterized by the visibility VS, the azimuth [i.e.,
the orientation of the major axis of the polarization ellipse
with reference to a given coordinate system], and the sense
of rotation [29], [30]. These parameters are experimentally
measurable, Usually, the output is examined by an analyzer
followed by a power meter. Let Pp,,x and Py;, be the maxi-
mum and minimum reading of the detector as the analyzer is
rotated. Then, the visibility is defined as [30]

VS = (Pmax - Pmin)/(Pmax + Pmin)~

For a linearly or circularly polarized beam, the visibility is,
respectively, 1 or 0. Fig. 2 shows the visibilities on both fibers
and power coupled to the tap fiber for a nominally 3 dB cou-
pler with untwisted, aligned, and nonidentical fibers. An
examination of (10) and (13) reveals that the results will re-
main unchanged when all linear dimensions, including the
wavelength, are scaled by a constant factor. Therefore, §, is
chosen as 1.0 arbitrarily and all parameters are left dimension-
less. Since the fibers are not identical, the variation of the
visibility will depend on the fiber involved and on the excita-
tion. In Fig. 2, VS;; and VS; are plotted as function of 6,
where VS is the visibility on fiber i when the input power
is on fiber j, and VSy; is the visibility on the fiber / when the
other fiber is absent (i.e., zero coupling). Note that VS,
and VSy; are almost the same, as are VS, and VSy,. In other
words, the visibility of the primary fiber is essentially the same
as that of the fiber alone and the presence of the tap fiber has
only a small effect. Also note that VS, = VS,,, ie., the
visibilities on the tap fiber are identical no matter which fiber
is the primary fiber. Therefore, for nonidentical, aligned
fibers without twist, interchange of the input fibers affects
only the SOP of the primary fiber, not the SOP of the tap
fiber or total power on either fiber. Also shown in Fig. 2 is
the fractional power P, transferred to the tap fiber as a func-
tion of 8. The variation of P; is due to the anisotropy of inter-

(20)

I(Ky - K,) L]~ sin™ [l M] (192)  fiper coupling as expressed by (19a) and (19b). If K, =K,
2 V/Pimin P2 max P, is essentially independent of 9.
if Instead of enumerating the variations of the output power
) . and output SOP for all possible input SOP, it is convenient to
sin (K + Ky) Lsin(Ky - Ky)L>0 use Jones’ matrices to summarize the relationship between the
and input and output SOP. A Jones matrix can be written for each
path. Once the Jones matrix is known, an ELER can be syn-
(K - K,) LI~ sin™ [ 1 Prmax —P1 min:' (19b) thesized. For example, the relation between (Ey, (0), £, (0))
2 VP1max P min and (Ey,;(z), £;(z)) can be extracted from (14a) and (14b)
and arranged as follows:
E..(2) ) [Fiixl O exp = j(011x ~ 0113)/2 0
[ y ]=exp (—;(euxw“y)/z)[ o IF S , }
Eyl(z) | 11y| 0 exp +j(011x - elly)/z
2D
exp - j(AB: + ABy) 24 0 . Exa(0)
. [ , (exp-j(B +B2)z/) | 1 .
0 exp +7(ABy + ABy) z/4 E,1(0)
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Fig. 2. Polarization characteristics of a coupler with nonidentical, un-
twisted, and aligned fibers.
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Fig. 3. Equivalent lumped element representation for couplers with nonidentical, untwisted, and aligned fibers.

These exponential terms and the (2 X 2) matrices represent,
respectively, a constant phase delay element ((611x +0115)/2),
a partial polarizer with unequal principal transmittances, a
linear retarder with retardation - (0,15 - 0415), another re-
tarder with retardation - (AB; + AB,)z/2, and another delay
element (B8; +6,)z/2 [23], [24], [30]. The ELER for this
path, together with that of the other coupler paths are shown
in Fig. 3. :

Note that for the simple case considered here, no rotator is

involved and the principal axes of all lumped elements are
aligned with the x-axis. If K, =K, and if the fibers are
identical, we have 0315 =0,,, =0, and |Fy,[=|Fy,l,
[F1a%l = 1F12yl. Then the retarder and the constant phase
delay element associated with 6,5 *6,,, disappear and the
partial polarizers become simple isotropic absorbers. The
ELER is. greatly simplified as shown in Fig. 4. The elements
enclosed in the dashed boxes can be identified as the ELER
for the untwisted fibers. The effects of interfiber coupling are
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Fig. 4. Equivalent lumped element representation for couplers with identical, untwisted, and aligned fibers.

reflected only in the isotropic absorbers and /2 phase delay  Since the symmetric and antisymmetric modes are uncoupled,
elements. Thus, for isotropic coupling with untwisted, iden- analytic solutions may be written immediately which in turn

tical, and aligned fibers, the SOP of the output of the coupler can be transformed to E,

Eul(Z) Fll +F33 F14 +F32 Fll_F33 F32"F14 Eul(O)
Ey (2) =le'fﬁz FiatF3; F{y+F%3 Fi4-Fs; F33-Fi|| Ey(0) 24)
Ep@)| 2 Fi1-F33 Fia-F3; FiytFa3 ~Fia- Fay | | Eyy(0)
By (2) F3s- Fia F53-FYy, -Fia-F3,  F33+ Ff [ By (0)
is identical to the output SOP of the fibers with the same bire- where
fri d length.,
ringence and lengt| e = oo e AB+2K cos by - 6;) X s
IV. FiBER COUPLERS WITH IDENTICAL, UNTWISTED, AND 1 4 2X sin 4z (25)
UNALIGNED FIBERS ,
) , , -, Ksin(¢: - ¢2)
Of all the assumptions made in the last sections, the assump- Fia =] — x sn Xz (26)
tion of alignment, i.e., ®; =®, =0 is probably the most un-
realistic one. It is therefore desirable to understand the effect a AR~ 2K cos{¢y - ¢;)
of misalignment (®, # ®,) on the polarization characteristics ;F33 =cos¥z-j 2Y sin Yz @27
of the coupler. To reduce the complexity of the problem, i
we assume that the fibers are identical (8; =8, =8, AB; = Fs, = _J-M sin Yz (28)
AB, = AB) and interfiber coupling is isotropic (AK =0). For Y
untwisted fibers, ®; is a constant ¢;, and K,; vanishes. Then and
C =0 and B becomes
B+1Ap 0 Kcos(py ~ ¢2) Ksin(¢y ~ ¢2)
~ 0 B- %Aﬁ -Ksin (@) - ¢,) Kcos(9: - 93)
B= _ ) (22)
Kcos (¢ - ¢2) -Ksin(¢, - ¢2) B+3AB 0
Ksin (¢ - ¢2) K cos (@ - ¢2) 0 B- A8
The coupled-mode equations (10) and (22) may be further
simplified by defining symmetric (£, Ey) and antisymmetric X=[(Kcos (¢, - ¢2) + 3 AB)*
E,,, E,;) modes : .
s Foa) #K? sin? (8, - 4] V2 29
Bus PO 1 0B, Y= [(K cos (#: - 61)- & OB
?s - fl’ (1) <1> (1) 2 ' ) +K? sin® (81 - 92)] 2. (30)
ua u2 To relate £,(z) with £ +(0), it is only necessary to use (24) in
Eyq 01 0-1]|E, conjunction with (7). More specifically, the relationship be-
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tween (£, (€9} Eyl (z)) and (Ex1(0), (Eyl 0)) is

Exl(z)} =—1—e'jﬁz [COS ¢ ~sing;
E,@) 2 sing;  cos ¢

) [Fu +F33 Fiq +F3, cos¢; sin@,
Fi4 +F3, Ff +F3;] |[-sin¢; cos¢,
E_. (0

) [ x1( )]. 31)
Ey(0)

The first and third square matrices correspond to rotators. It
can be shown that the second matrix is a product of a constant
24/1 - Py, and unitary matrix

[Fu tF33 Fig +F32]=2m:

* £
F4 tF3, FT, +F3;

, [(Fu tF33)QVT-Pr) (Fia + F33)l(2V/1 —"Pt)}
(Fia +F33)/2V1-Py) (F11 +F53)/(2V1-Py)
where
XY - (K? - ABY4)
2XY

P,=sin* (X+Y)z/2- sin Xz sin Yz

(32)

is the fraction of power transferred to the tap fiber. The con-
stant factor v/1 - P; corresponds to an isotropic absorber with
two equal principal transmittances. The unitary matrix is
equivalent to a retarder placed between two rotators [24].
Thus, all elements of the ELER representing the relationship
between (E (0), Ey;(0)) are known. Fig. 5 displays the
ELER for isotropic coupling with untwisted, unaligned, and
identical fibers. Also given there are expressions for all ele-
ments of the ELER. In the special case ¢, = ¢, =0, Figs. 4
and 5 become identical, as expected.

The effect of misalignment can be understood as follows:
when ¢; =¢,, Eyg, Eyy, Ey, and E,, are four uncoupled or-
thogonal modes with propagation constant = %AﬁiK .
When the fibers are misaligned, the modes become coupled,
E,s with E,,, and E,, with E,;, with coupling constants
+K sin (¢; - ¢, ). The propagation constants are also changed,
thus affecting the retardations §,;, 8, defined in Fig. 5 and
the transmittance of the absorbers. However, the unitary
character of the transfer matrices remains unchanged.

To study the polarization characteristics of couplers with
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visibility at some value of . The results are shown in Fig. 6
which displays the minimum visibility on the primary fiber
(VSp)min and on the tap fiber (VSy)min as functions of
L/Lpp. Also shown there is the minimum visibility (VSp)min
due to the birefringent fiber alone. Note that the (VS,)min
curve follows closely to that of (VSf)mia, particularly in the
region where L/Lgp is small. As L/Lgg increases, the effects
of interfiber coupling and misalignment become more evident.
The difference between (VS;)min and (VSp)min is quite notice-
able especially in the region L/Lgg ~0.5. The effect of
¢1 - ¢2 on (VS,)min and (VS)min has also been examined.
It is interesting to note that when ¢, - ¢, = £90°, the output
on the tap fiber is always linearly polarized, (VS )min = 1, for
any linearly polarized input. Mathematically, this can be
deduced from the fact that §,, =0 when ¢, - ¢, = 90°.
Physically, it may be understood as follows. When ¢; - ¢, =
+90°, the fast mode of fiber 1 is coupled with the slow mode
of fiber 2, and vice versa. Thus, the coupling between one set
of modes (i.e., the fast mode of fiber 1 with the slow mode of
fiber 2) is exactly the same as the coupling between the other
set (i.e., the slow mode of fiber 1 with the fast mode of fiber
2). Then the output SOP on the tap fiber is exactly the same
as the input SOP. Conceptually, this leads to the possibility
of canstructing couplers, with polarization maintaining proper-
ties on the tap fiber, from any birefringent fibers. Of course,
the fiber alignment is critical and fibers have to be handled in
a way that no extraneous birefringence is introduced.

V. FiBER COUPLERS WITH TwWISTED FIBERS

In this section, couplers with twisted fibers are considered.
We assume that the fibers are twisted uniformly and with
identical twist rate &

D;(z) =z + ¢ (33)

¢; is the orientation of fiber i at z=0. Then &, - &, =
#1 - ¢,. Since Kp; is proportional to the twist rate [15] —~[18]
Kpy =Kpy =K,. Under these conditions, and with C=0,
(10) again reduces to a set of simultaneous equations with
constant coefficients. To identify the effect of twisting, we
begin by considering a simplified situation: couplers with
identical and aligned fibers (B, =8, =8, Af, =AB, = Ap,
¢1 =¢,). Then the term K sin (®, - ®,) in (11) vanishes.
Again symmetric and antisymmetric modes can be defined as
in (23) and analytic solutions become available.

E,(2) Gi1cosKz Gy cosKz -jGy, sinKz -jGy, sinKz| | E,;(0)
Ey1(@) _ o6z -Gz cosKz  GfycosKz jG,, sinKz -jGT, sinKz| | E,,(0) (34)
E,(2) -jG,; sinKz -jGy, sinKz Gy, cosKz Gy cos8Kz | | E,,(0)
E,,(2) jG1a sinKz -jG¥, sinKz -Gy, cosKz GF, cosKz ] | E,,(0)

unaligned fibers, we consider the evolution of the output
SOP with a linearly polarized input [(16a), (16b)]. As the
azimuth 6 of the input polarization changes, the visibility of
the output would vary between 1 and a minimum value. To
be specific, 3 dB couplers are considered. For a given fiber
birefringence A, misalignment ¢, - ¢,, and coupler length
z=L, a value for K can be determined such that P,=1.
From AB, ¢, - ¢,, L, and the value of K so obtained, §,, and
6,2 can be computed, which in turn leads to the minimum

where

A
Gy, =cosZz —j—E sin Zz

2Z
£-K,
z
Z=[(5- Kp)* + A4

Following the procedure established in the previous sections,

Gy = sin Zz
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Fig. 7. Equivalent lumped element representation for couplers with identical, twisted, and aligned fibers.

the ELER can be obtained (Fig. 7). The lumped elements en-
closed by the dashed lines are exactly those for uncoupled
twisted fibers alone. The effect of interfiber coupling between
the fibers is reflected only by the presence of the isotropic
absorbers (cos Kz or sin Kz) and the n/2 phase delay element
in the crossover branch. This is reminiscent of isotropic cou-
plers with untwisted, identical, and aligned fibers. In particu-
lar, it is noted that the retardance is

8,=-2sin™? [%g sin Zz] . (35)
If the fibers are not twisted, (£ =K, =0), 8, =-Apz which is
precisely the retardance given in Fig. 4 for the case without
twist. As the twist rate increases, the retardance &, oscillates
with a decreasing amplitude. In fact, for cauplers with heavily
twisted fibers, i.e., |& - K,| >> AB, (35) reduces to

sin (15 - Kpl2)

§,~-ABz
’ - Kplz

(36)
which shows how a high twist rate overrides the effect of the
linear birefringence AB. In this high twist rate limit, the
normal modes of the coupler become circularly polarized in
opposite directions [25], resulting in a linearly polarized out-
put for a linearly polarized input. This suggests another ap-
proach to making a coupler which preserves linear polarization,
providing sufficient twist could be imparted to the fibers over
the interaction length of the coupler.

We cannot treat the case of nonidentical twist in fiber cou-
plers because the &, - &, terms in (10) become z-dependent
and an analytical solution is no longer possible. We would
expect that the isotropic feature of the absorbers in Fig. 7
would be lost in an amount depending on the difference in the
twist rates. However, the high twist limit, as discussed above,
should still qualitatively apply.

As long as the fibers are twisted equally, a general algorithm
may be used to study (10), even though the fibers are noniden-
tical (8; # 8., AB: # ApB,) and/or unaligned (¢, #¢,). Let
A; be the ith eigenvalue and P; be the corresponding eigen-
vector of B(i = 1-4). Then  and P can be constructed

exp - jAyz 0 0 0
~ 0 exp-jAyz 0 0
¢- 0 0 exp - jA3z 0
0 0 0 exp-jAsz
(37)
ﬁ=[ﬁ1 ﬁz Py B,] (3%

and the solution of (10), subject to the initial condition E,,(0),
can be written as

E,(z) =PQP'E,(0). (39)

In terms of the stationary coordinate systems

E2)=T(tz+¢1,82 + ;) POP T(-¢,,-9,) Ex(0).
(40)

This general algorithm has been used to calculate the polariza-
tion characteristics of couplers with twisted but nonidentical
and unaligned fibers. As the previous case the visibility ap-
proaches unity in the high twist limit. This is illustrated in
Fig. 8 where visibilities for primary VS;, and tap VS,, fibers
in a nominal 3 dB coupler are plotted versus the input azimuth
0 for increasing twist rates. The parameters used correspond to
couplers with a coupling length of 4.0 mm, constructed from .
birefringent fiber with Lgp = 7.5 cm, and twisted at a rate of
0, 0.1, 0.5, and 1 turns/cm, The initial misalignment is ¢, -
@, =45°. Itis interesting to note that the mechanical strength
of glass would limit the maximum twist rate to 10 turns/cm
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Fig. 8. Fffect of twisting on the polarization characteristics of cou-
plers with nonidentical, twisted, and unaligned fibers.

[31] and it has also been reported that fibers may be twisted
by 1 turnfcm without breaking [32].

The effect of the initial misalignment ¢, - ¢; on couplers
with twisted fibers has also been investigated. We find similar
behavior to the effect of alignment without twist, as discussed
in Section IV. The tap fiber visibility approaches unity as
[¢, = ¢11 ~90°, while the primary fiber visibility is not sig-
nificantly affected.

It would be desirable to have an ELER for the couplers with
twisted, but nonidentical or nonaligned, fibers as well. The
equivalent representations for T (-¢1,-¢2) and T ¢z + ¢,
£z + ¢,) are simply a rotator at each end of the fibers. How-
ever, the ELER for PQP™! is quite complicated. PQP
4 X 4 matrix, can be subdivided into four Jones matrlces,
with one for each of the four paths between the input and
output ports. Numerical calculation showed that these Jones
matrices are not unitary nor are they the products of a con-
stant and a unitary matrix. An exact ELER for each path
would consist of a partial polarizer, two retarders, and a ro-
tator, according to Hurwitz and Jones’ theorem [24].

VI. DiscussioN AND CONCLUSIONS

There are two additional complications in the fabrication of
real couplers that we have not considered in our analysis. First
is the addition of induced nonuniform birefringence caused by
the fabrication of the coupler to the intrinsic uniform fiber bi-

refringence which we have modeled. Considering the fabrica-
tion methods employed in all the couplers of references
[1]1-[9], it seems that none would be free from these effects.
Twisting, fusing, polishing, and fixing with epoxy or glass-gel
would all induce or alter the intrinsic birefringence of the
fiber. Additionally, even the very low birefringence fibers fab-
ricated by perform spinning are susceptible to this difficulty.
Second is the effect of the birefringence in the fiber leads,
which are required to access the coupling region. In prin-
ciple the fiber leads can be modeled by lumped element
representations and placed in series with that of the coupler
to characterize the transmission matrix of the coupler as
a whole. If the induced or intrinsic birefringence of the
leads is substantial, however, they cannot be neglected.

Some experimental results have been reported by Sheem and
co-workers [2], [4] and additional data have also been ob-
tained by Koo and Villarruel [28]. These experimental results
are in qualitative agreement with those presented in this work.
Since the precise rate of twisting in the coupling region is not
known and it is difficult to separate the effects of the fiber
leads and birefringence induced by packaging from the con-
tributions from the coupler, a quantitative comparison is not
feasible. However, we expect that the treatment provided here
will aid in the interpretation of future experimental work.

In the previous sections, the following three idealized classes
of couplers were studied in detail:
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1) couplers with nonidentical, untwisted, and aligned fibers
with anisotropic interfiber coupling, (8 #8,, APy FAB,,
£1=6=0,¢0; =¢, =0,K, #K,),

2) couplers with identical, untwisted, misaligned fibers with
isotropic interfiber coupling (8, =8,,AB; =AB,, & =&, =0,
¢1 #¢,,K, =K,), and

3) couplers with identical, uniformly and equally twisted
aligned fibers, and isotropic interfiber coupling (8, =8,
APy =48, 8 =8 #0,¢, =¢2,K, =K}).

From these studies, the effects due to nonidentical fibers,
anisotropic interfiber coupling, misalignment, and fiber twist-
ing have been identified. An exact equivalent lumped element
representation (ELER) was obtained for each class of coupler
and these representations are particularly helpful in under-
standing the polarization characteristics of the fiber coupler.
If we consider identical fibers with isotropic coupling for the
cases of aligned axes 1) and aligned axes with equal twist 3),
we see from Figs. 4 and 7 that coupling has no effect on the
SOP in the fibers whatsoever. The polarizer elements are iso-
tropic. As noted previously a partial polarizer with two equal
principal transmittances is really a simple isotropic absorber
[23], [24]. For these two classes of couplers the SOP is
determined completely by the intrinsic and induced (by twist)
birefringence in the fibers. When identical fibers are unaligned
[case 2)], the situation is more complicated in that now the
SOP is perturbed by the act of coupling itself. However, in
this case, the polarizing element in the lumped model is still
isotropic so that the power coupled is still independent of
input polarization (for K, ~K,). We show in Fig. 6 that in
the worst case, for small values of L/L gp, the output visibilities
are of the same order as the worst case visibility in a single
fiber with the same birefringence. Finally, in the apparently
simple case of Fig. 3, where nonidentical fibers with real aniso-
tropic coupling are aligned, we have the most complicated case
with the output SOP complicated by the presence of the par-
tial polarizers in the ELER, which represents polarization
dependent coupling. However, we know these effects will
be small because real couplers, to date, are made from fiber
from the same sample and the anisotropy in K is small, 5 per-
cent or less {9]. Although our examples are obviously over-
simplified, we use a similar argument to extend our results to
a real coupler, i.e., we expect in a real coupler that the devia-
tions from our assumptions will be relatively small and that
we can conclude that the primary determinant of the SOP in
a fiber coupler is the intrinsic and induced birefringence in the
fibers used to make the coupler. Our assumption of identical
twist is the weakest in this regard since identical twist is not
likely to occur in a real coupler unless deliberately induced.

In each of the equivalent lumped element representations
the power coupling fraction is represented either by isotropic
absorbers in an idealized case, or by partial polarizers in more
generally anisotropic cases. We note from the work of Jones
et al. [23], [24] that these seemingly complicated representa-
tions for each path can be replaced by a single rotator, a single
retarder, and an isotropic absorber, in the cases where the
transfer matrix is unitary, and by two retarders, an anisotropic
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partial polarizer, and a rotator, when the transfer matrix is not
unitary,

We have identified two special cases where fiber couplers
maintain linear polarization for arbitrary input azimuth,
These include the case of 90° misalignment where the tap fiber
has a constant unity visibility, and the case of high uniform
twist where both outputs approach unity visibility in the
high twist limit.

It is of interest to consider the implications of our results to
couplers fabricated with high-birefringence or polarization
maintaining fibers. Although we have restricted our analysis
to cases where the index or geometrical ellipticity is not too
large, our results should at least qualitatively apply to high
birefringence fibers as well. The advantage of high bire-
fringence would be that polarization would be maintained
even in the presence of weak induced birefringences. It is ob-
vious from Fig. 5 that the fibers would have to be aligned at
0°, in which case the linear input would also have to be aligned,
or at 90°, in which case only the tap fiber would have unity
visibility. Probably the largest experimental problem, after
alignment, would be to avoid the relaxation of the high bire-
fringence during coupler fabrication.
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